Cloud Logging is a useful tool for GKE users (check out these great blog posts on getting the most out of it). You can view all the logs from all your containers, over all clusters. I prefer it to using kubectl get logs for many tasks. For example, I can monitor all pods from a… Continue reading Reducing GKE Log Ingestion
Category: GKE
HA 3-zone Deployments with PodSpreadTopology on Autopilot
PodSpreadTopology is a way to get Kubernetes to spread out your pods across a failure domain, typically nodes or zones. Kubernetes platforms typically have some default spread built in, although it may not be as aggressive as you want (meaning, it might be more tolerant of imbalanced spread). Here’s an example Deployment with a PodSpreadToplogy… Continue reading HA 3-zone Deployments with PodSpreadTopology on Autopilot
SSD Ephemeral Storage on GKE (including Autopilot)
Do you need to provision a whole bunch of ephemeral storage to your Autopilot Pods? For example, as part of a data processing pipeline? In the past with Kubernetes, you might have used emptyDir as a way to allocate a bunch of storage (taken from the node’s boot disk) to your containers. This however requires… Continue reading SSD Ephemeral Storage on GKE (including Autopilot)
TensorFlow on GKE Autopilot with GPU acceleration
Last week, GKE announced GPU support for Autopilot. Here’s a fun way to try it out: a TensorFlow-enabled Jupyter Notebook with GPU-acceleration! We can even add state, so you can save your work between sessions. Autopilot makes all this really, really easy, as you can configure everything as a Kubernetes object. Setup First, create a… Continue reading TensorFlow on GKE Autopilot with GPU acceleration
Migrating an IP-based service in GKE
Let’s say you want to migrate a service in GKE from one cluster to another (including between Standard and Autopilot clusters), and keep the same external IP while you do. DNS might be the ideal way to update your service address, for whatever reason you need to keep the IP the same. Fortunately, it is… Continue reading Migrating an IP-based service in GKE
Running GKE Autopilot at Scale
If you like what you see with Autopilot (now the recommended way to use GKE), and want to run it at scale, there are a few things to know when setting up the cluster, and scaling your workload. Cluster Creation To run a large Autopilot cluster, it’s advisable to do two things: 1) create the… Continue reading Running GKE Autopilot at Scale
Provisioning one-off spare capacity for GKE Autopilot
I previously documented how to add spare capacity to an Autopilot Kubernetes cluster, whereby you create a balloon Deployment to provision some scheduling headroom. This works to constantly give you a certain amount of headroom, so for example if you have a 2vCPU balloon Deployment, and use that capacity it will get rescheduled. A useful… Continue reading Provisioning one-off spare capacity for GKE Autopilot
High-Performance Compute on Autopilot
This week, Autopilot announced support for the Scale-Out Compute Class, for both x86 and Arm architectures. The point of this compute class is to give you cores for better single-threaded performance, and improved price/performance for “scale-out” workloads — basically for when you are saturating the CPU, and/or need faster single-threaded performance (e.g. remote compilation, etc).… Continue reading High-Performance Compute on Autopilot
Building Arm Images with Cloud Build
This week’s big news in Google Cloud was the addition to Arm across a wide range of products, including GCE VMs, and GKE (both Standard and Autopilot). In an earlier post, I covered how to get an Arm-ready Autopilot cluster on day 1. The recommended way to build images for Arm is with buildx. This… Continue reading Building Arm Images with Cloud Build
Arm on Autopilot
Arm was made available in Preview on Google Cloud, and GKE Autopilot today! As this is an early stage Preview, there’s a few details to pay attention to if you want to try it out, like the version, regions and quota. I put together this quickstart for trying out Arm in Autopilot today. Arm nodes… Continue reading Arm on Autopilot
Minimizing Pod Disruption on Autopilot
There are 3 common reasons why a Pod may be terminated on Autopilot: node upgrades, a cluster scale-down, and a node repair. PDBs and graceful termination periods modify the disruption to pods when these events happen, and maintenance windows and exclusions control when upgrade events can occur. Upgrade gracefulTerminationPeriod: limited to one hourPDB: is respected… Continue reading Minimizing Pod Disruption on Autopilot
Building GKE Autopilot
Last month gave a presentation at KubeCon Europe in Valencia on “Building a Nodeless Kubernetes Platform”. In it, I shared the details about the creation of GKE Autopilot including some key decisions that we made, how the product was implemented, and why I believe that the design leads to an ideal fully managed platform. Autopilot… Continue reading Building GKE Autopilot
Preferring Spot in GKE Autopilot
Spot Pods are a great way to save money on Autopilot, currently 70% off the regular price. The catch is two-fold: Your workload can be disrupted There may not always be spot capacity available For workload disruption, this is simply a judgement call. You should only run workloads that can accept disruption (abrupt termination). If… Continue reading Preferring Spot in GKE Autopilot
Separating Workloads in Autopilot
Autopilot while being operationally nodeless, still creates nodes for your workloads behind the scenes. Sometimes it may be desirable as an operator to separate your workloads so that certain workloads are scheduled on their separates nodes, a technique known as workload separation. One example I heard recently was a cluster that primarily processes large batch… Continue reading Separating Workloads in Autopilot
Kubernetes Nodes and Autopilot
One of the key design decisions of GKE Autopilot is the fact that we kept the same semantic meaning of the Kubernetes node object. It’s “nodeless” in the sense that you don’t need to care about, or plan for nodes—they are provisioned and managed automatically based on your PodSpec. However, the node object still exists… Continue reading Kubernetes Nodes and Autopilot
Creating an Autopilot cluster at a specific version
Sometimes you may wish to create or update a GKE Autopilot cluster with a specific version. For example, the big news this week is that mutating webhooks are supported in Autopilot (from version 1.21.3-gke.900). Rather than waiting for your desired version to be the default in your cluster’s release channel, you can update ahead of… Continue reading Creating an Autopilot cluster at a specific version
Choosing the right network size for Autopilot
One of the most important decisions you can make for your Autopilot cluster is selecting the right network size. Too small and you’ll constraint your potential growth. Too large and you might run out of IPs if you have a lot of cluster. You can’t change the Pod address size after creation, so it’s important… Continue reading Choosing the right network size for Autopilot
Using GKE Autopilot in specific zones
GKE Autopilot is deployed using the regional cluster architecture. This has a number of advantages such as giving you 3 master nodes for high availability of the control plane, and the ability to spread pods among zones for high availability of your workloads. But sometimes this may be more than what you need, and zonal… Continue reading Using GKE Autopilot in specific zones